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Abstract. A new approach (Domain-Element Local Integro-Differential-Equation Method — DELIDEM) is devel-
oped and implemented for the solution of 2-D potential problems in materials with arbitrary continuous variation
of the material parameters. The domain is discretized into conforming elements for the polynomial approxima-
tion and the local integro-differential equations (LIDE) are considered on subdomains determined by domain
elements and collocated at interior nodes. At the boundary nodes, either the prescribed boundary conditions
or the LIDE are collocated. The applicability and reliability of the method is tested for several numerical
examples.
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1. Introduction

In many engineering materials, especially functionally graded materials (FGMs), the physical
properties are characterized in continuum theories by position-dependent material coefficients
or in other words, many engineering materials are practically non-homogeneous. Hence, the
development of efficient numerical methods is required and subsequently computer codes
incorporating the variation of material coefficients. In the past decade, much attention has
been paid to FGMs because of their excellent thermal and mechanical properties. Owing to
the continuous change in the material composition and gradation, the material performance
can be tailored and optimized to fulfill particular service requirements. Subjects related to
the processing, characterization and potential applications of FGMs can be found in the
review articles by Hirai [1] and Paulino et al. [2] as well as in the monographs by Suresh and
Martensen [3] and Miyamoto et al. [4].

Mathematically speaking, boundary-value problems (BVPs) for FGMs are described by
partial differential equations (PDEs) with variable coefficients. It is beyond the scope of
this paper to give a comprehensive review on the literature devoted to the analytical and
numerical methods for the solution of such PDEs. Both the well-established finite-element
method (FEM) and the boundary-element method (BEM) or boundary-integral-equation
method (BIEM) have to be modified and extended from homogeneous materials to FGMs.
Special graded elements have been proposed by Kim and Paulino [5] to improve the con-
ventional FEM for FGMs. It is well known that the FEM as a domain-type discretization
method has some advantages over the BEM for problems with material non-homogeneity or
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nonlinearities. Strictly speaking, the pure boundary-element formulation, resulting in only the
boundary being discretized, is applicable to BVP only when the fundamental solutions or the
Green’s functions of the governing PDEs are available. Nevertheless, the boundary-integral-
equation formulation has been applied also to BVP in non-homogeneous materials by using
the boundary elements and the domain cells simultaneously in the so-called boundary-domain
formulations (see, e.g., [6,7]). However, the simultaneous use of both the boundary elements
and the domain cells is inherently inconsistent because the boundary densities are assumed to
be mutually independent over the boundary element, while the gradients of the primary field
are not independent of its approximation within the domain cell [8]. Despite this fact, bound-
ary-domain formulations have been employed in BIEM, especially for non-homogeneous and
nonlinear problems, but with certain loss of efficiency as compared with the pure boundary-
integral formulation.

The attraction of the dimensional reduction in pure boundary-element formulations
motivated much research work on the derivation of fundamental solutions for PDEs with
variable coefficients. Some success has been achieved on this subject (see, eg., [9-17]),
but often with strong restrictions on the functional dependence of the variable coefficients
representing the material non-homogeneity. Moreover, the derived fundamental solutions can
be expressed only in terms of transcendental functions and/or integrals which are too complex
to be suitable for numerical implementation and hence make the BIEM more cumbersome.

Owing to the dimensional reduction, pure BEM formulations are advantageous over the
standard FEM, especially for stress-concentration problems such as notch or crack problems,
and problems with free moving boundaries when a remeshing is required. Avoiding reme-
shing is one of the most important motivations for the great effort towards developing mesh-
free or meshless implementations of both the integral equations and variational approaches
employed in FEM. Among many meshless methods proposed in the literature, the meshless
local integral-equation method (LIEM) involving the moving least-squares (MLS) approxima-
tion seems to be very promising in dealing with BVP in non-homogeneous materials with
a continuous variation of material parameters [8,18-23]. A disadvantage of this approach is
that it involves three free parameters (namely the radius of sub-domains, the radius of the
influence domain and a parameter used in the weight functions for the MLS approximation)
which should be properly selected.

Recently, further attention has been devoted to extending the applicability of integral-
equations-based formulations for the solution of BVPs when the fundamental solution is not
available in a simple way with the purpose of getting a formulation resulting in a sparse sys-
tem matrix like in FEM. One such proposal concerns a combination of the global and local
integral equations implemented either by the standard finite-size discretization elements or the
MLS approximation [8,24-27]. Mikhailov [28] and Mikhailov and Nakhova [29] proposed to
use localized boundary-domain-integral equations for solution BVPs governed by PDEs with
variable coefficients. In their formulations the fundamental solution is replaced by a parame-
trix (Levi function).

In this paper, we aim to demonstrate that the numerical implementation of the approach
based on the local integro-differential equations (LIDE) and domain-element approxima-
tion of the field variable [8] yields satisfactory results when solving 2-D potential problems
in media with continuously varying material coefficients. The use of domain elements for
discretization may appear to be a pre-processing disadvantage in problems requiring reme-
shing. This, then, is the price to be paid for getting a sufficiently simple, general and reliable
(accurate and numerically stable) computational method. The simplicity is borne out by the
use of a simple fundamental solution (expressed by elementary functions) and non-singular
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or at most weakly-singular integral equations. The generality is given by the possibility
of employing the method to problems with arbitrary continuous variation of the material
coefficients. On the other hand, the employed finite-element mesh can be successfully uti-
lized for the post-processing of numerical results. Recall that a physically acceptable solu-
tion approach to a structural-field problem in a continuum theory is subject to two principle
demands: (i) incorporation of complete boundary conditions, (ii) involvement of the whole
bulk of material into the interaction, ie., full information on the whole boundary as well
as the domain should be incorporated into the numerical approach. Both these requirements
are satisfied in a natural and reasonable way by discretizing the whole structure into finite-
size domain elements and numerical simulation of the field variable within such elements by
a polynomial interpolation. As compared with the weak formulations used in the standard
FEM, the present approach is based on the numerical solution of the exact integro-differ-
ential equations by using the same polynomial approximation within the domain elements.
The resulting system matrix is sparse as in the standard FEM. As compared with the bound-
ary-domain formulation, no regularization procedure is required, since the employed integro-
differential equations are either non-singular or at most weakly singular. Moreover, the incon-
sistency in the approximation concept is removed.
Several test examples are presented to verify the proposed method.

2. Integral-equation formulation for potential problems in non-homogeneous materials

Let us consider the potential problem in non-homogeneous materials [30, Chapter 3]. The
governing equation is given by

(k(X)u,;i (X)) ,; = f(x) in Q. (D

Among many physical interpretations, u(x) could be regarded as the stationary temperature
field with £k and f being the heat-conduction coefficient and the body heat-source density,
respectively. The subscripts following a comma denote partial derivatives with respect to
Cartesian coordinates.

Assuming k(x) to be a differentiable function of the spatial coordinates and
non-vanishing in Q, Equation (1) can be rearranged as

) ki fX)
\Y u(x)—i——k(x) u,; (X)= rx)

For simplicity, let us consider the Dirichlet and the Neumann boundary conditions given by

2

u(m)=u(m) if n€aQp,
g(m) (3)

Ou = if neaq

where 0Q=0QpUdQy is the complete boundary of the domain .
Strictly speaking, the flux g is prescribed on 9Q2y. However, the normal derivative is related
to the flux ¢ by du/on=gq/k.

It should be remarked that the fundamental solution for the differential operator

) ki),
(V ™ 3’)

cannot, in general, be given in closed form, except for special cases [9—15]. Nevertheless, one
can formulate the solution of the above-stated BVP using the boundary-domain-integral-equa-
tion approach [7]. For this purpose, one can use the fundamental solution of the Laplace
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operator which is defined as the solution of Poisson’s equation in an infinite space with a
point source, i.e.,

V2G(x—y)=—8(x—y), )

where §(r) is the Dirac §-function. It is well known that

1
——1log (L), for 2d problems
Gr=1 {7\

—_, for 3d problems
4r

®)

in which r =|x —y| and r, is an arbitrary constant used for getting a non-dimensional argu-
ment for the logarithmic function.

Making use of the fundamental solution of the Laplace operator, we can recast the inte-
gral identity

G(x—yD

0 [f(x)—k.j (u,; (x)]dQ(x) (6)

/G (Ix —y)) VZu(x)dS2 (x) =f
Q

Q

into an integral representation for the potential field

3 3G (In—
c(y)u(y) =/ [%(H)G (m—yD —u(n)%]dr(n)
Q2
G(x—yl)
_/ % [f(X) —k,j (Xu,; (X)] dQ(x), e
Q

with

I, yeqQ
C(Y)={ 0, v¢(QUIN). ®)
Note that all the integrals exist in the normal sense as long as the source point y does not
lie on the boundary 9. The limit case y— ¢ € 32 will be considered later in Equation (24)
where all the integrals still exist in a normal sense.

Owing to the domain integral containing the unknown potential gradients, Equation (7)
no longer has the character of a pure boundary-integral formulation. Thus, it is insufficient to
solve the system of boundary-integral equations (BIEs) for the boundary unknowns: one has
to discretize the interior of the domain also in order to compute simultaneously the potential
gradients. The integral representation for the potential gradients can be obtained directly by
differentiating Equation (7), either without regularization, which leads to a hypersingular inte-
gral representation, or with a subsequent regularization, which results in a non-hypersingular
integral representation with strongly singular kernels [7]. In such a boundary-domain formu-
lation, the boundary unknowns are approximated independently as in the standard BEM for-
mulation and the potential gradients in the interior are expressed in terms of the potential at
interior nodes by using the finite-element approximation within interior cells. Note that these
two types of approximation are inherently inconsistent. In the following sections, we propose
another method based on a finite-element approximation throughout the domain © and use
of local integral equations for coupling the nodal values.
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3. Domain-element approximation

Contrary to the pure BEM, the dimensionality of the problem is not reduced if domain inte-
grals are involved. It should be pointed out that by approximating a field within a domain
element, one can get the gradients of that field by differentiating the approximation of the pri-
mary field. Thus, the concept of independent approximations of boundary densities employed
in the discretization of the BIEs is not consistent with the concept of domain-type approx-
imation of the same primary field as proposed in the boundary-domain formulation of the
integral-equation approach.

Let us consider a 2-D plane domain 2 to be subdivided into m conforming quadrilateral
serendipity elements S,,e=1,...,m, by using polynomial interpolation for the approximation
of both the geometry and the potential field. Then,

n

n
m
Q=U S u®ls, =) uONELE).,  xils, =D A NG E), ©)
€= a=1 a=1
where x{'“are the Cartesian coordinates of the a-th nodal point on S,, and N represent the
shape functions. On each domain element, one can define two non-collinear vectors h¢, (€1, &)
for ¢ =1,2 with the Cartesian components

1\ e ONY(E,
h;i(gl,gz)zzx;‘2$, (i=12). (10)
a=1 o

The Cartesian components of the gradients of the approximated field are expressed in terms
of the partial derivatives with respect to the intrinsic coordinates by using the transformation
relationship

@ 0 8(9)

-1 0(8)
R (i
X; T 9x; BSJ 705 |
where (he)_1 is the inverse matrix to the matrix h® defined by (10). Since
B ea 1 he ,
(he)l“l: 83;183]1( kl(%lg &) (12)
I e3mnhy,, (&1, 82)h5, (61, 62)
we may write
u(x) esiesjihyy, (61, 62) ae  ONY( )
_ K 51 52, Z() 5152’ (13)
9xi |5, €3mnhi,, (&1, 8205, (xi1, §) = 0§

where g;;; is the permutation tensor, €312 = —e331 =1, €311 =320 =0. Hence, one can also
express the normal derivatives of the potential on the boundary of the domain in terms of
nodal values of the potential field. Thus, collocating the Dirichlet and the Neumann bound-
ary conditions, we obtain a subsystem of linear algebraic equations for the computation of
the potential values at all nodal points

ub=uc?), ifPedp (14)
ni(¢?) ghe be
mb 2 () ( ) ag (5 é2)
Y
=~ b
9 i b e (9w — 0p) (15)

T k(@Y
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Figure 1. Illustration of the sub- Figure 2. A quadrilateral ele-
domain S¥ and its boundary 9S”. ment with its corner nodes and

boundary sides T'(/P),

in which (g{’e,gff) are the intrinsic coordinates of ¢? € S,;m? is the number of discret-
ization elements adjacent to ¢”. The unit normal vector n;(¢?) is taken as the aver-
age of normal vectors evaluated at ¢? if m® > 1. Assuming existence of potential gra-
dients at corners, one can select arbitrarily one of two sides joined at the corner for
the definition of the normal vector n;(¢?) and the prescribed flux g(¢?) in (15), pro-
vided that the Neumann boundary conditions are prescribed on both sides of the cor-
ner.

Bearing in mind the present concept of approximating field unknowns in terms of poten-
tial values, it is more appropriate to regard (7) as the integro-differential representation of
the potential field, since both the integral and the differential operators are applied on the
unknown field.

The shape functions and their derivatives for the bi-linear, quadratic, cubic and quartic
quadrilateral Lagrange elements are given in the Appendix. The rest of the system of linear
algebraic equations will be obtained by discretization of the local integro-differential repre-
sentations of the potential field at interior nodes.

4. Local integro-differential equations

Recall that all the considerations given in Section 2 are valid for any sub-domain of the whole
body Q. Let S” denote the union of all domain elements S, adjacent to the interior nodal
point x¥ (see Figure 1), with S, being assumed to be closed. Thus,

m

m
"= J S.. with @=|JS.. (16)
e=1 e=1
x’eS,

According to Equation (7), we may write the local integro-differential representation of the
potential at x¥ in terms of the potential and its normal derivative on the boundary 957, as
well as the potential gradients in SV, as

0 oG (Jn —xV
= [ [B6 (v ~un E DD
asY
G (Ix—x"])
_/T[f(x)—k’j Xu,; (x)]dQx). a7

sr
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In view of the conforming element approximation, the discretized form of the local integro-
differential Equation (17) is given as

u(x)= Y > u(x")

SedXxY a=1

elf, ey=1 (0P g (o)) AN (o trp) g trm) c
{Z /_ ”@)[h) (676" G (68 ) G —x7)

11
v (U P el fP) ) G(Ix(§)—x"|)
N (57 ) G x| p(s)ds+//l—k(x(§))

aN“(&1,62)
0E;
in which ¢, is the local number of collocation points on the finite element S, (i.e., XV =x%),

and the boundary contour 9S” is decomposed into finite portions defined by the element
sides TP as

x [k,i(X(é))(he)[,l(él,Ez) —f(X(S))} Je(é‘l,%z)déldéz}, (18)

087 = (T with (fp)e((12),(23), (34), (41)) (19)
Se3X7 (fp)
and (J“@= U ©.2“@= 3 @
(fp) (fp) (fp) (fp)
u\.Cgéréfm x0g¢l—~éfp>

The notation Féf P is used for that side of the quadrilateral element S, which lies between
the local nodes f and p as shown in Figure 2.

The intrinsic coordinates (Sl(f 25 $2<f P >) and the tangent vector t; Pl on TP ¢ s, are defined
as follows
51<12> s, 5“2) ~1, ) =h§ .- D,
sl =1,6" PO () e (1, 5), 20)
Bay e(34) e
";‘_1 =s,§, —1 T, 7 (s)=—h{;(s, 1),
E =L g B (= e (<1,),

with s €[—1, 1]. Then, the global Cartesian coordinates of the field point, the unit normal vec-
tor and the Jacobian of the transformation from the global coordinates to the intrinsic ones
on Féf P S, are given as

n
1rlZ(fp) _ ZxZeNa (gl(fp)’ éz(fp))v nf(fm(s) :g,-j3tf<fp>(s)/re<fp)(s),

a=1
-L-e(fp)(s):\/‘[;(fp)(S)T;(fp)(S)- (21)

The Cartesian coordinates of the integration points on S, are given as

xils, —Zx“ L&), ELEre[-1,1] (22)

and J¢(&1, &) is the Jacobian of the transformation (xi, x2) — (&1, &) which is given by

Je(§1,€2)=‘83ij 1: €1, 62)h5; (1.8 | (23)
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It is convenient to employ the polar coordinate system in the intrinsic space with the centre at
(&{,&;5) corresponding to the collocation point x° in order to eliminate the logarithmic sin-
gularity in the domain integral. Although the contour integrations and the integration with
respect to the radial variable can be performed analytically in the case of bilinear Lagrange
elements, the numerical integrations by standard Gauss-Legendre quadrature yield very accu-
rate results.

Equations (14), (15) and (18) form a complete set of linear algebraic equations for the
computation of the nodal values of the potential. Because of the local character of these
equations, the system matrix is sparse as in standard FEM.

As an alternative to Equation (15), one can also use the LIDE collocated at the bound-
ary nodes on the Neumann part of the boundary. A suitable form of that LIDE is given as
follows

aG(In—2¢®]) o
/{[u(n)—u(ﬂ’)]%—%(n)G(’n—fl")}dF(n)
NG

k,j(x) fx)
—/u,j(x) kJ(X) G(‘x—{b‘)dﬂ(x)z— mG(‘x—;”‘)dsz(x), P ey, (24)
sb sb

where the subdomain S” is defined by (16) as the union of domain elements
adjacent to the boundary collocation point ¢?. Recall that the local boundary 35? is com-
posed of both the non-singular and singular sides of the finite elements adjacent to ¢”. The
former lie in the interior of Q, while the singular sides lie on the global boundary 9%2) ¢
(more precisely, on its Neumann part 9Qy C 9€2). In the illustrative Figure 3, the singular
sides are 9S,, N3 and 3S,, NI when sb =S,, US,, , while one singular side 95, N9 takes
place when the sub-domain S? is formed by one domain element S?=S,.

The integration over those Féf P >, which do not lie on the global boundary 92, is the same
as in the case of the LIDE collocated at an interior node. One should be careful when inte-
grating over Féf e QN C 9L, because the collocation point ¢ lies on those Féf P! t0o. To
illustrate this, let us consider the integration over Fem) with x2¢, x3 € 9Q. If we use the qua-
dratic approximation, the Taylor series expansion of the shape function N“(&, &) on F§23> is
given as

2

1 9k Na
a a b k
Ne(l,s)=N (1,52)+k§ﬁ)(s—g§) @(1,55), &=se[-1,1].
oQ
$'=S,US, | Sei
Q Cb
SeZ
os®

Figure 3. Tllustration of two possibilities for the sub-domain $? (and its boundary 85%) created by either two or one
quadrilateral discretization elements adjacent to the boundary node z”.
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23) = (s _géz)be(s)’ Rieb(s)

re
8 a b\ a2 ara
_ ae | IN (s—&)) 9N b
_2 e S E ). o9
8
IN“ s —&5) 92N
[wm —u(e")]| o = ~8) Ll [ (1eh)+ 22) At sg}

and finally, in view of Equations (20), (21) and (25), we have

/[u(n)—u(fr )] (n—¢")r(m)dr (m)

23)

rd
sl,s ae hz,(l s)Rf”(s) ONT -, =& N
( ) (1,&)+ - ( ) |d
Reb( ) 0&) 2 8%‘

(26)
with R® = /R’ R¢" being bounded within the whole interval s € [—1, 1]. Thus, the integrand
involving the normal derivative of the fundamental solution is bounded on FéB).

As to the other boundary integral in (24), it becomes on Fé23>
ou b . 6? (n) b
/r<23> G (|n- ()drm)—/ﬂm TG (|n—c])aran. @7)
where g(n) is either expressed as a given function at each point on F (w1th n; |F<23> =(s—

Ez)be—f-{i ) or its variation is approximated over the prescribed nodal values on Fem) as

8
Gmlpen =) g N (Ls),

a=1

where the shape functions N“(1, s) vanish, if the a-th nodal point does not lie on F . Thus,
the integral (27) becomes

/“’”G(\n ¢ hdr

k(n)
Fézs)
= CIO)) b R (s)
==5- » k("l](s)) [0g<‘s—€2‘)+log< P >i|‘l:(s)ds (28a)
or
am) -
fn k() (‘n ¢ ‘)dr(n)
8 1 a b
— 1 ~ae Ne(1,s) b R (s)
= SO o0 (s =) 10 (572 | (25b)
respectively, according to the two kinds of prescribed data for the flux on F . Recall that

T(s) = (h2 (L, s)hy;(1, s)) and the extracted logarithmic singular term can be integrated by
using a special logarithmic Gauss quadrature. All the other integrals can be integrated by reg-
ular Gauss-Legendre quadrature.
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5. Numerical experiments

In order to test the proposed method, we consider some examples for which the analytical
solution is available and can be used as a benchmark solution. In all cases, we consider a
2-D potential problem with the governing equation given as

ki (x)

2
Veu(x) + KX

u,; (x)=01in Q, (29)

in which the continuously variable coefficient k(x) #0. In the literature, the spatial variation
of material coefficients for FGMs is usually assumed as exponential or of power-law type.
In the present paper, we merely test the proposed numerical method without any relation
to concrete materials. In all numerical computations, we have used conforming quadrilateral
serendipity elements and the numerical integrations have been carried out by regular Gauss-
Legendre quadrature with 12 integration points.

5.1. ExampLE 1

Let us consider the BVP governed by Equation (29) in a square L x L with the
exponentially graded material coefficient in the x;-direction being given by

k(x) =k,e>*2/ L, (30)
where § is a dimensionless material parameter. The boundary conditions are given as follows

u(x)=u, for x1 €[0, L]Ax; =0, u(x)=urg for x; €[0, L]Ax, =L,

q(x)=0 for x;=0 or LAxy€]0, L]. 3D

The exact solution of this 1-D problem is given by

1 _e—8x2/L

BEE 4

u(X)=uo+[ur —uo)
5.1.1. Convergence study
In order to compare the accuracy of the numerical calculations for various discretization
meshes, we have evaluated the global % error defined by L; norm error

1/2 1/2

GPE=100 / [ (%) —u®* () ] dQ (x) / / [0 dew) (33)

Q Q

We present the results of the investigation based on the use of:

(1) two different material media characterized by § € {0, 2};

(i) four different orders of serendipity elements (linear, quadratic, cubic, quartic);
(ii1) two kinds of discretization meshes:

(a) non-uniform meshes based on splitting the square sample width into two elements
and the height into m/2 elements with m =4, 8, 10, and 20 domain elements (the
corresponding total numbers of nodes are given in Table 1)

(b) uniform meshes with homogeneous distribution of nodal points in both the x; and
xp directions with m=4,9, 16, 25, 64, 100 square elements.
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Table 1. The total numbers of nodal points corresponding to the
employed orders of approximation.

Number of elements m  Linear Quadratic = Cubic  Quartic

m=4 9 21 33 45
m=3 15 37 59 81
m=10 18 45 7 99
m =20 33 85 137 189
10 10" =
-"‘;\ 5=0 102 R
10° \\ s ] \ A
o 10 3 o -
106 A\R 104 3 \Q_T_"** quadratic elem.
B ] "\ 5=0
10° E \ —&— non-uniform
E 107 E 106 . @ uniform
6 P 07 8 |
1 108 1 \ —%— non-uniform
1011 .. " linear elem. 1o° 3 \| - uniform
—6— quadratic el. ; \
101 —&— cubic elem. 1010 4 o \
--8— quartic el. wudoo o b
1015 . r e . ,"- — 1012 ] . . — e'
102 101 100 102 10t 100
h/L h/L

Figure 4. The dependence of the global % error on the dimensionless mesh parameter for: (i) the homogeneous
medium (8 =0) using four different kinds of quadrilateral elements. (ii) two different media (§ =0, § =2) using two
different kinds of meshes of quadratic elements.

In order to compare the numerical results obtained by using various discretization meshes, we
shall use the shortest distance between any two nodal points 4 as a mesh characteristic.
The increase of the number of discretization elements and/or their order can improve the
approximation of both the geometrical and field variables by interpolation within the element
in some problems. On the hand, the increase of the number of nodal points (nodal unknowns)
gives rise to calculation errors. In the analysed simple problem in a homogeneous medium,
the exact solution is linearly dependent on the xj-coordinate. The integration along straight
lines is exact and the domain integrals are not involved. Thus, any increase of nodal points
is not expected to improve the accuracy as compared with that achieved by using the coars-
est mesh of linear elements. This expectation is confirmed by Figure 4. Since the solution is
independent of the xj-coordinate, it is natural to make the discretization finer in the x, direc-
tion, as assumed in the employed non-uniform meshes. Such a discretization, however, leads
to flattened-out elements what is finally the other source of computational errors. From Fig-
ure 4 for a non-homogencous medium, one can see the improvement of the accuracy when
decreasing the dimensionless parameter #/L and when a uniform mesh of square elements is
used. This is the influence of the improvement of the approximation accuracy for the potential
field and its gradients by increasing the number of elements. A similar trend can also be seen
in the case of non-uniform meshes in the initial stage of mesh refining, but a further flatten-
ing-out of the elements yields a final decrease of the accuracy. Finally, this negative influence
becomes dominant for dense meshes and the accuracy is the same as in the case of a homo-
geneous medium (§ =0). For a homogeneous medium, a global decrease of the accuracy is
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Figure 5. Variation of the dimensionless material Figure 6. Potential field in a square along the direc-
coefficient within the sample thickness x = x;/L for tion of variation of material coefficient with exponen-
the case of exponential gradation. tial gradation.

observed when h/L is decreased, even in the case of uniform meshes, as can be seen from
Figure 4.

In what follows, we shall present the numerical results obtained by using the quadrilateral
conforming elements with quadratic approximation.

5.1.2. Visualization of numerical and analytical results

As an illustration, we present the variation of the material coefficient in the direction of the
non-homogeneity for four different values of the material parameter §. It can be seen from
Figure 5 that the enhancement of the material coefficient on the top of the square sample is
remarkable for § =2 and also for § =1. Nevertheless, the numerical solution perfectly fits the
exact one for each considered value of the material parameter §, as is seen from Figure 6.
The results have been obtained by using a non-uniform mesh with eight elements.

5.2. EXAMPLE 2

In this example, the geometry and boundary conditions are the same as in Example 1. The only
difference is in the variation of the material coefficient which is now given by the power law

k(x)=(14+8x2/L)". (34)

The considered BVP is again 1-D and one can easily find the exact solution, which is

_ log(1+8x2/L) _
M(X)—M0+[ML—uo]k)g(1—+8) for I’l—l,
B (148xy/L)' " —1
u(X)=uo~+[ur —uo) S for n#£1. (35)

We present the numerical results for the exponent n = 2. The material coefficient variation
is similar as in Example 1, but its relative increase at the top of the sample is higher (see
Figure 7).

The computed values of the potential field again fit perfectly the analytical values (Figure
8). A slightly worse accuracy is obtained for the case of the material
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Figure 7. Variation of the material coefficient within the Figure 8. Potential field in a square along the direction
sample thickness x = xp/L for the case of power-law of variation of material coefficient with power-law gra-
gradation. dation.

(kxt,x)?

Figure 9. The spatial variation of the material coeffi- Figure 10. The surface of the exact solution of the BVP.
cient.

parameter § =2, when the global percentage error is 0.6932% by using a non-uniform mesh
with eight elements.

5.3. EXAMPLE 3

As a further demonstration of the accuracy of the method, we consider the BVP governed by
Equation (29) in a square [1, 2] x [1, 2] with the material coefficient graded in two directions
as

2
k(x) = <L) . (36)

X1X2

The analytical solution [14] is

1 _1{*2 X1X2
u(x):z(xg—xlz)tan l(x_1)+T (37)
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Global % error = 0.06803

% error
0,050]
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-0,0253
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-0,150

\'g

Figure 11. The global % error and the distribution of  Figure 12. Discretization mesh for the tube section
the % error within the sample discretized into 10 uni- with 8 quadrilateral quadratic elements.
form quadratic elements.

It obeys the boundary conditions

1 1 1 2
uGr. D=5 —xptan (= )+ @ 2)=s@-xDtan (=) 4,
2 X1 2 2 X1
q(1,x2) =—k(1, x2)u 1(1, x2), g2, x2) =k(2,x2)u 1(2, x2), (38)

with the potential gradients being given as

2 2
X7X X1X
u1(x)=-—x1 tan~! <Q> + 1 2 u(X)=x2 tan~! <x_2) + 12 (39)

X1 xlz—i-x% X1 x%+x§

As an illustration, we present the variations of both the material coefficient and the exact
potential throughout the sample domain in Figures 9 and 10.

Having used the non-uniform meshes with m =8, 10,20 quadratic elements, we obtained
satisfactory and stable results with global percentage errors equal to 0-06721%, 0-06803% and
0-08972%, respectively. It can be seen from Figure 11 that the distribution of the % error falls
within an acceptable interval.

5.4. EXAMPLE 4

To apply the method also to curved geometry, let us consider the BVP governed by Equa-
tion (29) in a thick-walled tube with the exponentially graded material coefficient in the radial
direction being given by

k(x) =koe® "=/ (b=a), (40)

where a and b are the inner and outer radii, respectively.
When the boundary conditions are assumed angularly independent, the problem is rota-
tionally symmetric and the governing equation for such a 1-D problem becomes

" 1 k/ /
uw'(r)+{—+—)u'(r)=0. 41)
rk
Eventually, inserting (40) into (41), we obtain

u"(r) + (% + )/) u' (=0, y=8/-a. (42)
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Assuming the potential to be prescribed on both the inner and the outer surfaces, the ana-
lytical solution can be expressed as

r e—yt
u(r):u(a)—i—A/ dr, 43)
b
e V!
with A=[u(b)—u(a)]// ; dr.
Bearing in mind the deaﬁnition of the Exponential integral function [31, Chapter 5]
o
e—xt
En(x)zf o dr, x>0, n=0,1,... .
1
we obtain from (43)
u(b) —u(a)
u(r)=u(a)+ Ei(yr)— Ei(ya)]. 44
El(Vb)—El(J/a)[ 1(y 1(ya)] (44)
Similarly as in the case of a homogeneous medium, we arrive at
b) —
u(r)=u(a)+ ) —ula) [logr —loga]. (45)
logb —1loga

For the numerical evaluation of the Exponential integral function, one can use its continued-
fraction representation together with the modified Lentz algorithm [32, Chapter 5.2].

In numerical computations, we have used for values of the material parameter § €
{0,0-01,1,2} and m quadrilateral serendipity elements (m = 4,8, 10,20) with quadratic
approximation. We have discretized a very narrow section given by the angle « =10° by using
two elements in the angular direction and m/2 elements in the radial direction. An illustrative
mesh is shown in Figure 12.

The variation of the exponentially graded material coefficient is shown in Figure 5 with
the dimensionless coordinate defined now as x = (r —a)/(b —a). Figure 13 shows a good fit
to the exact solution by the numerical results similarly as in the case of a square sample. The
results have been obtained by using a uniform mesh with eight elements.
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Figure 13. Potential field along the radius of a tube
with the exponentially graded material coefficient.
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Figure 14. Potential field along the radius of a tube
with the power-law graded material coefficient.



276 V. Sladek et al.

5.5. EXAMPLE 5

Finally, we shall consider a rotationally symmetric problem as in the previous
example but with the material coefficient being graded according to the power-law

n
k(r)=<1+8r “) . (46)
b—a
Then, the governing equation (41) becomes
1 ny
" - 4 =0 47
”(”)+(r+1+y(r_a)>”(’) (47)
and it can be solved analytically yeilding the result
u(b) —u(a)
= I -1 4
u(ry=u(a)+ I(b)—I(a)[ (r)—1(a)], (48)
where 1(r) is expressed in terms of elementary functions. For n =2, we have
I1(r)= ! +1lo A=1 0 (49)
r_A2 A+yr gA—i—yr ’ B va. J/_b—a'

The variation of the material coefficient is shown in Figure 7 with the dimensionless coordi-
nate defined as x=(r —a)/(b —a). A comparison of the numerical results with the analytical
solution is given in Figure 14. In the case of the worst accuracy (8§ =2), the global percentage
error is 1-7324 % by using the mesh with eight elements.

Note that all the present results have been obtained by using the collocation of the LIDE
only at interior nodes and by satisfying the boundary conditions with approximated fields at
the boundary nodes. Alternatively, we have tested also the collocation of the LIDE at the
boundary nodes on the Neumann part of the global boundary, but the accuracy of the results
has been affected only insignificantly.

6. Conclusions

The paper presents a new formulation for the solution of BVPs in 2-D potential theory in
heterogeneous media. This formulation consists in

(1) the domain-type approximation of both the potential field and geometry by using con-
forming serendipity elements;

(i) the satisfaction of the prescribed boundary conditions at boundary nodes by approxi-
mated fields or alternatively by the collocation of the local integro-differential equations
at the boundary nodes on the Neumann part of the global boundary;

(iii) the collocation of the local integro-differential representation of the potential field at
interior nodes.

The proposed method is quite general for continuously heterogeneous media, since there is no
restriction on the continuous variation of the material coefficient. According to the performed
numerical tests, the method is reliable, because of the high accuracy and stability of numerical
results. As for as the numerical treatment is concerned, the method is very simple because it
uses a simple fundamental solution and non-singular and/or at most weakly-singular integral
equations. The system matrix is sparse as in the standard FEM formulation.

In contrast to the weak formulation in the standard FEM, the present formulation is
based on the exact integro-differential equations which are solved numerically by using the
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same approximation for the primary field as in the FEM. As compared with the boundary-
domain formulation, no regularization procedure is required and the approximation concept
is inherently consistent. By making use of the domain discretization of the whole struc-
ture (together with a reasonable polynomial interpolation of physical fields within domain
elements), one can incorporate the complete boundary conditions into the formulation as
well as the interaction of the whole bulk of material and the material behaviour in a nat-
ural and straightforward way. The discretization mesh prepared in pre-processing can be
used successfully also in post-processing of numerical results. Thus, the method can become
effective also from the point of view of discretization effort, especially in problems when
re-meshing is not required and one needs to know the solution throughout the whole struc-
tural domain.

For simplicity, we demonstrated the new formulation using 2-D potential problems. How-
ever, the extension of the new formulation to solutions of boundary-value problems for other
partial differential equations is possible.
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Appendix A. Shape functions for some quadrilateral serendipity elements

In this Appendix, we summarize the shape functions and their derivatives for quadrilateral
serendipity elements with using the interpolation by Lagrange polynomials. For the bi-lin-
ear and bi-quadratic approximations, we present them just for completeness, since they are
well known and available from many literature sources. For the sake of brevity, we shall use
the notations in which a subscript following a comma denotes the partial derivative, ie.,
NG (&1, 6) = IN“(§1,62)/0¢;, with (i=1,2).

(1) Bi-linear Approximation

a=1 a=2 a=3 a=4

N1, &) —enl-&)  (1+&e00-8&)  Td+end+&) 3(1-£)1+8)
N9 ELE) &1 11-8) 1(1+8&) ~11+&)
NS @ELE) @& =D —td+e) TA+&) Ta—g
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In this case, one can write

hii 1. &) =a; +&b;,  h5 (&1, 6&)=c] +&1b], (A.T)
where

ai = (xl-ze +xi3€ —xte xlg) /4, bf= (xl-le — x4yl — x?e) /4,

1 1 l L

e__ 3e 2e 4e le
ci—<xi —x; X7 = x; )/4.

l

Furthermore,

e3mnhi,hy, = f°+618° +6k°, (A.2)
with

fC=e3mancy, 8 =e3manby,  k°=e3unby,cp.

Note that bf = 0 in the case of rectangular bi-linear elements, what enables us to
perform all the integrations in LIE analytically.

(i1) Bi-quadratic Approximation

N'=—(-&)1-&)¢E +6+D/4 N =(1-§)(1-£)/2,
N2=(+&N(—&)E—&—1)/4,  NS=(1-&)(1+&)/2,
N3=(+ENI+&)E +E-1/4  N'=(1-&)1+8)/2,
N*=(1-&NU+8&)(—E+&-1/4, NS=(1-&)(1-£)/2,

NY=(1-8)Q& +&)/4. Ni=&(1-£),
NA=(1-8)QE —&)/4.  NG=(1-£)/2,
N3y =(1486)Qt+86)/4,  Ni=—t(1+&),
NY=(+8)Q5-8)/4,  Ni=@E-D/2

NYy=(-EDE+26)/4, Ny=@E-D/2,
Ny= (8D (=61 +28)/4, Nh=—6(1+8).
Ny =(1+EDE +26)/4,  Ny=(1-£D)2,
NY=(1—EN(=E+28)/4, N =& - D).
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(iii) Bi-cubic Approximation

Note that the interpolation polynomials for bi-cubic approximation are rarely published in
closed form [33]. We decided to present these polynomials, also because of typing errors in
[33, p. 49].

N'=(1—-EN1—&)9E+£)—10]/32,  NT=9(1+E&)(1—&)(1-3£)/32,
N =(1+EN1—E)9E+E)—10]/32,  N3=9(1+E&)(1—&)(143£)/32,
N3 =(1+ENN+E)OE+E)—10]/32 NP =9(1+&)(1—&)(143£)/32,
N=(1—ENU+&)9E+E)—10]/32,  N'O=9(1+&)(1—&))(1-3£)/32,
N>=9(1—&)(1 - (1 —3&1)/32, N =91 &)1 - (1+3&)/32,
NO=9(1 —&)(1 — &N (1 +3&1)/32, N2=9(1 &)1 — &) (1 —3&)/32.

N =(1-&)[185 — 9367 +£) +101/32, N =9(1-&) (1 —36)/32,

N3 =(1-&)[185 +9(367 +£3) — 101/32,  N§ =9(1—&))(1 +36)/32,

NI =(1+8&)[1851 +9BE7 +85) —10]/32, N =9(1+&) (98] — 281 +3)/32,
N4 = (1+&)[185 — 9367 +£) +101/32,  N'0=9(1+£)(987 — 261 — 3)/32,
N3 =9(1 - £)(987 — 26 — 3)/32, N =9(&5 — 1)1 +38)/32,

NG =9(1 — £) (=967 — 2¢1 +3)/32, N'Z=9(&5 — 1)(1 —3&)/32.

NL=(1—6D[186 — 90 +369) +101/32, N, =9(1+£&) (98] —26 —3)/32,

N2 =(1+&)[188 — 9 +360) +101/32,  N&=9(1+&)(~983 — 26, +3)/32,

N3 = +ED[185 +9(E] +365) —10)/32, N3 =9(1 - &) (1+31)/32,

N4 =(1—&)[186 +9(E7 +363) — 101/32, NP =9(1-&})(1 - 3&)/32,

N3 =9 — (1 —3&)/32, N =9(1 &) (-9 — 25 +3)/32,

N&=9(¢ — D1 +361)/32, NB =901 -£)(97 —26 —3)/32.
(iv) Bi-quartic Approximation

We have never seen published in closed form the interpolation polynomials for
biquartic approximation. That is why, we present them here.
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13 12 M

. & 610
15 ¢ L) 09

N'=(1—&)(1—8)/4=3(N>+ N0 /4 — (N*+ N2 — (N7 + N')/4,

N?=(1+&)(1—8)/4=3(N"+N®/4— (N*+N%)/2— (N° + N'0)/4,

N3 =(1+&)A+8&)/4-3N""+ N4 — (N°+N'?)/2— (N3 + N13) /4,

NY=(1 =& +8)/4=3(NP+ N4 — (N2 + NP2 — (N + N6 /4,
N =45 (1-ED(E - 1/2)(1—8&)/3,  N'M=46(1-&)E +1/D(1+8)/3,
NO=2(& - D(EE - 1/4(1 - &), N2=2E - D(E -1/ + &),
NT=45(1-EHE+1/2)(1-8&)/3, NP =451 -&)E —1/)(1+£)/3,
N3=4&(1-E)(E - 1/2(1+&)/3,  N¥=46(0-&)E+1/2(1-8)/3,
N =2(&7 — D(E - 1/H (1 +£), NP =2 —1)(E - 1/H(1 &),
NO=451-HE+1/2(0+86)/3, N =460 -&)E —1/2(1-£)/3.

Ny= (&= D/4=3(N]+N /4= (NG + NP2 (V] + N /4,
N3 =(1—-£)/4—3(N]+N3)/4— (NG +N/2— (NS +NY)/4,
Ni=(1+6)/4 =3+ NYD/A— N+ NP /2= WV +N ) /4,
Ni=—(1+8&)/4=3WP+NH/4-NE+ NP 2=+ N))/4,

N3 =41 -8&)[(1 -3&]) (& — 1/2) +& (1 —£D]/3
N =41 -&)[(1 - 3&))(E +1/2)+ &1 —ED]/3,
N =208 -5 —1/4),
N =40 +&)[(1 -3 E +1/2)+& (1 —ED]/3,
NP =41+ &)[(1 -3ED)E — 1/ +& (1 —ED)/3,
NP =201-8)E —1/4),

N§ =1 —-8)& 887 -5),
N§ =46(1-) (& —1/2)/3,
NP =461 -)(E+1/2)/3,
N'Z=(1+&)& 8 —5),
N =45 - 1)(E+1/2)/3,
NP =46 (1-0)(1/2—&)/3.

No=(E—D/4=3WN3+ND) /4= (NS +NF)/2= (NS +N5)/4,

Ni=—(1+8)/4—3(N,+N%)/4— (NS +N%/2— (N5 +NY)/4,

Ny =(1+E)/4=3ND+ N 4= (NG + NP 2= (VS +N5) /4,

NY=(1—£)/4=3(NS+ N5 /4—(NF+ N 22— (VY + N /4,
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Ny =46(1-EH(1/2-8)/3,  NY=201-£D(E—1/4),
NL=451(EF - D(E+1/2)/3,  Ny=41+&)[(1-38) (& — 1/2) + &1 -£D]/3,
N%=(14£)8 (887 - 5), NY =41 +&)[(1 =36 E+1/2) +&(1-ED]/3,
NY =46 (1-&)E+1/2)/3, NY=2E-DE -1/4),
N =45(1-)E1—1/2)/3, NY =40 —-&)[(1 -3E)(E+1/2) +E(1-£))/3,
NY =(1-8D5BE -9, NY =41 -&)[(1 =36 (E — 1/2) +&(1 - ED]/3.
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